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ABSTRACT
Background  Cardiovascular risk is underassessed in 
women. Many women undergo screening mammography 
in midlife when the risk of cardiovascular disease 
rises. Mammographic features such as breast arterial 
calcification and tissue density are associated with 
cardiovascular risk. We developed and tested a deep 
learning algorithm for cardiovascular risk prediction 
based on routine mammography images.
Methods  Lifepool is a cohort of women with at least 
one screening mammogram linked to hospitalisation 
and death databases. A deep learning model based on 
DeepSurv architecture was developed to predict major 
cardiovascular events from mammography images. 
Model performance was compared against standard 
risk prediction models using the concordance index, 
comparative to the Harrells C-statistic.
Results  There were 49 196 women included, with a 
median follow-up of 8.8 years (IQR 7.7–10.6), among 
whom 3392 experienced a first major cardiovascular 
event. The DeepSurv model using mammography 
features and participant age had a concordance index 
of 0.72 (95% CI 0.71 to 0.73), with similar performance 
to modern models containing age and clinical variables 
including the New Zealand ’PREDICT’ tool and the 
American Heart Association ’PREVENT’ equations.
Conclusions  A deep learning algorithm based on 
only mammographic features and age predicted 
cardiovascular risk with performance comparable 
to traditional cardiovascular risk equations. Risk 
assessments based on mammography may be a novel 
opportunity for improving cardiovascular risk screening 
in women.

INTRODUCTION
Cardiovascular disease results in 18 million deaths 
annually and contributes to significant morbidity 
and reduced health-related quality of life.1 Cardio-
vascular disease and its risk factors are under-
recognised and undertreated in women, and risk 
prediction algorithms have underperformed in 
women,2 adversely impacting outcomes.3 For 
example, Australian women are 12% less likely than 
men to have cardiovascular risk factors assessed in 
primary care,3 and in Australia in 2020, only 49% of 
eligible women had sufficient risk factors recorded 
to enable a cardiovascular risk assessment.4 Despite 

newer developed risk scores, PREVENT5 and Q46 
performing better in women than men, they require 
extensive medical data to be accurate. No Austra-
lian programmes currently target gender inequity in 
cardiovascular risk screening, highlighting the need 
for novel approaches to identify ‘at-risk’ women.

In Australia, and globally, breast screening 
mammography is offered to women free-of-charge 
through a national screening programme, Breast 
Screen Australia, and 50% of eligible women aged 
50–74 years attend screening biannually.7 In addi-
tion to early cancer diagnosis, mammograms offer 
information about cardiovascular risk. Breast arte-
rial calcification (BAC) has been shown to correlate 
with the risk of cardiovascular events8 and with 
vascular risk factors such as diabetes, hypertension 
and hypercholesterolaemia.9 However, BAC is not 
associated with obesity and is inversely associated 
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	⇒ Cardiovascular screening tools are poorly used 
in women, with the WHO highlighting the need 
for novel approaches to cardiovascular risk 
prediction.
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calcification (BAC) from mammographic images 
have been developed for cardiovascular risk 
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the utility of BAC alone as a cardiovascular risk 
prediction tool.
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with smoking, suggesting using BAC alone to predict cardiovas-
cular risk may have limitations.8 Other mammographic features, 
including microcalcifications and breast density, have also been 
shown to be associated with cardiometabolic disease risk and 
mortality but are yet to be evaluated together.10 11

In addition to persisting uncertainties in the observational 
epidemiology, other challenges to the use of mammography 
for cardiovascular risk prediction have been the absence of 
standardised assessments, time-consuming nature of manual 
evaluations and inter-reader variability. Even the automated 
quantification of BAC has failed to overcome the differences in 
breast composition.12 Fully automated deep learning analysis of 
whole breast architecture/characteristics, rather than BAC alone, 
may be more accurate at predicting cardiovascular events, but 
has not previously been investigated.

This study aims to derive and internally validate an algorithm 
that predicts cardiovascular risk in women attending routine 
screening mammography for breast cancer, assessing the poten-
tial for using mammography as a ‘two for one’ screening test.

METHODS
Recruitment
This study included women enrolled 2009–2020 in the Lifepool 
cohort registry, living in Victoria, Australia. The Lifepool cohort 
was established by the Peter MacCallum Cancer Centre, the 
University of Melbourne, and the Royal Melbourne Hospital, 
with participants recruited from Breast Screen sites across 
metropolitan and rural areas. It was established in 2009 and has 
enrolled 54 000 women. At enrolment, participants completed a 
baseline health survey and consented to the registry accessing 
the images from any screening mammography undertaken at 
Breast Screen and to link to their routinely collected health data 
through the Victorian Admitted Episodes Database for hospital 
admissions and the National Death Index. Further information 
on the Lifepool Cohort Study is available at www.lifepool.org.

Participants
Eligibility of Lifepool participants for this study was based on 
there being at least one set of screening mammogram images 
available and no hospitalisation for a cardiovascular cause 
recorded in the Victorian Admitted Episodes Database before 
their first mammogram.

Mammography measures
The first available set of right and left breast digital mammographic 
images was used for each participant. Wherever possible, image 
data for mammograms recorded on two different occasions were 
used. However, in 9% of cases, only one set of mammographic 
images was recorded prior to the first cardiovascular event, and 
in those cases, it was used in isolation.

Other exposure measures
The baseline health survey completed at enrolment captured self-
reported data including age, smoking status, alcohol intake, body 
mass index, diabetes history and use of antihypertensive, lipid 
lowering and antiplatelet therapies. Additional data included 
menopause, parous history and use of hormonal therapy, and 
factors potentially altering breast architecture, such as radiation 
therapy, breast surgery and breast cancer.

Outcomes
The primary outcome was ‘Extended Major Adverse Cardio-
vascular Events’ (extended MACE) defined as either (1) a 

hospitalisation event recorded in the Victorian Admitted 
Episodes Database with a primary or secondary diagnosis encom-
passing an International Classification of Disease version 10 
Australian Modification code for atherosclerotic cardiovascular 
disease or heart failure (online supplemental appendix table 
1) or (2) a corresponding death record in the National Death 
Index. Secondary outcomes were the individual components of 
Extended MACE: myocardial infarction, stroke, atherosclerotic 
disease, heart failure and cardiovascular death.

ANALYSIS
Baseline characteristics were summarised as means and propor-
tions and tabulated. Participant follow-up was from the date 
of their first mammogram to the date of their first recorded 
outcome or the censoring date defined by the last available 
linkage to the National Death Index on 31 December 2020. 
Analyses were conducted using R V.4.2.3.

Cardiovascular risk prediction models: We used an image 
encoder to extract mammography features, which were 
combined in a neural-network-based model to predict risk of 
extended MACE over a 10-year time horizon (figure  1). The 
encoder included two submodules for mapping the input images 
into a radiomic signature: one for extracting deep-learnt features 
of the mammography images and one for extracting 196 conven-
tional radiomic features (online supplemental appendix page 5 
app 2–3 sub-module 2). Prior to deep feature extraction, images 
were normalised to reduce the internal covariate shift, improve 
training stability and harmonise across imaging sites and equip-
ment. However, normalisation may obscure subtle features 
like faint or small calcifications. To address this, conventional 

Figure 1  Model for predicting cardiovascular risk using 
mammography and age. Radiomic model for risk prediction fed into 
the image encoder using one or two screening mammography rounds 
and predicting MACE-free survival using DeepSurv and DeepHitSingle 
prediction models. MACE, major adverse cardiovascular event.
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radiomic features were extracted from original, non-normalised 
images to preserve such details and complement deep features. 
These included first-order statistics, texture features (GLCM, 
GLRLM, GLSZM), higher-order matrices (NGTDM, SFM) and 
transform-based features (Gabor, RFS, Fourier), following vali-
dated protocols in breast cancer imaging. Because some scanners 
contributed few cases, deep learning may have under-represented 
their feature space. Including handcrafted radiomics mitigated 
this limitation by enhancing feature diversity across devices. A 
sensitivity analysis (online supplemental table 6) showed a small 
but statistically significant performance gain with their inclusion.

The final radiomic signature was obtained by concatenating 
the deep learning-based and conventional features from the 
images (figure 1). Where two image sets were available, the time 
interval (in years) between the two sets of images used for each 
individual was included as a feature in the radiomic signature to 
explore whether this was associated with model performance. 
The radiomic signature was then combined with the partici-
pant’s age at the baseline survey to predict the risk of extended 
MACE risk using DeepSurv, a semiparametric non-linear 
continuous-time model.13 The model was trained and tested 
using nested cross-validation. Tuning hyperparameters of Deep-
Surv and DeepHitSingle models was undertaken to improve the 
performance of the deep learning-based model.14 15 A list of the 
hyperparameter search spaces for each deep learning model is 
provided in the online supplemental table 2. Figure 2 shows the 
nested cross-validation method, including the details of training 
of the model.16 This method tested three different sets of inputs:
1.	 Mammography model—based on age and radiomic data.

2.	 Clinical model—based on clinical characteristics (All vari-
ables in table 1) without radiomic data.

3.	 Combined model—based on clinical characteristics and ra-
diomic data.

The analyses were repeated using DeepHitSingle, a non-
parametric non-linear discrete-time model as a sensitivity anal-
ysis17 (online supplemental appendix and online supplemental 
table 2).

All models were built in Python.
Comparison of performance between models: We evaluated 

the performance of the deep learning-based survival models 
using the time-dependent concordance index, the integrated 
inverse probability of censoring weighted Brier score, and the 
integrated inverse probability of censoring weighted binomial 
log-likelihood.15 The performance metrics are further described 
in the online supplemental appendix.

The calibration of the models was compared by dividing the 
participants into deciles based on their predicted risk of expe-
riencing an event in the next 10 years and the mean predicted 
risk for each group from each model was plotted against the 
observed risk for the group calculated using Kaplan-Meier 
survival methods. The slopes of the regression lines between the 
predicted and observed risks for each model were then compared 
(online supplemental figure 1).

Comparison of performance against standard risk prediction 
models: Current cardiovascular risk prediction models use a Cox 
proportional hazards model as their underlying framework and 
usually report Harrell’s C-index as a measure of discriminative 
power. We tabulated key features of established cardiovascular 

Figure 2  Models and the nested cross-validation process. The mammography model combines radiomic signature with age. For comparison, clinical 
and combined models were also built. The outer loop is being used to report the final performance metrics of the model, while the inner loop is used 
for tuning the hyperparameters. The blue and green items refer to the training (inner 10-fold cross-validation loop) and testing (outer cross-validation 
loop) phase. Both inner and outer loops are repeated 10 times. The same process is done for all three models to ensure the comparability of the 
models. CV, cardiovascular; DL, deep learning.

https://dx.doi.org/10.1136/heartjnl-2025-325705
https://dx.doi.org/10.1136/heartjnl-2025-325705
https://dx.doi.org/10.1136/heartjnl-2025-325705
https://dx.doi.org/10.1136/heartjnl-2025-325705
https://dx.doi.org/10.1136/heartjnl-2025-325705
https://dx.doi.org/10.1136/heartjnl-2025-325705
https://dx.doi.org/10.1136/heartjnl-2025-325705


4 Barraclough JY, et al. Heart 2025;0:1–9. doi:10.1136/heartjnl-2025-325705

Cardiac risk factors and prevention

risk prediction models (using age and clinical data) with their 
C-index for comparison (table 2). We enabled further compar-
ison with existing standard risk prediction models by using 
clinical data available for the Lifepool cohort to build a Cox 
proportional hazards risk prediction model.

RESULTS
Participant characteristics and available data
There were 49 196 women with no evidence of prior cardio-
vascular disease included in the analysis (table 1). Mean age at 
baseline was 59.6 (SD 9 years), range 35–94 years and median 
follow-up was 8.8 years (QR 7.5–10.6 years). At baseline, 5% 
were current smokers, 62% had body mass index (BMI) >25 kg/
m2, 6% had type 2 diabetes, 33% were taking medication for 
hypercholesterolaemia, 27% for hypertension and 11% were 
on an antiplatelet agent. The median time between the first 
mammogram and the collection of baseline health data was 2 
years. There were 3392 individuals that recorded an extended 
MACE event during follow-up at a rate of 7.6/1000 person 
years (95% CI 7.4 to 7.9) (table 3). The majority of events were 
coded as atherosclerotic disease (n=2383) with 731 heart failure 
events, 656 myocardial infarction events and 434 stroke events 
also recorded. Prespecified analysis of event rates by age and 
BMI is shown in online supplemental tables 3 and 4.

Prediction of extended MACE using machine learning
The performance metrics of machine learning models are shown 
in table 4. The Mammography model built using the age and 
radiomic data predicted extended MACE events with a concor-
dance index of 0.72 (95% CI 0.71 to 0.73), an integrated Brier 
score of 0.06 (95% CI 0.058 to 0.063) and an integrated bino-
mial log-likelihood of −0.21 (95% CI −0.22 to −0.20). The 
slope of the calibration plot was 1.12 (95% CI 1.09 to 1.16). To 
further visualise the discriminative power of the model, we used 
the output of the DeepSurv for Mammography model and cate-
gorised individuals using the median risk to generate high-risk 
and low-risk groups (figure  3) (log rank test statistics=76.13, 
p<0.001). In addition to the primary analyses, we performed 
subgroup analyses across key subgroups. The concordance index 
for the Mammography model was 0.72 (95% CI 0.70 to 0.75) 
among individuals with BMI <25 kg/m2 and 0.71 (95% CI 0.70 
to 0.73) in those with BMI ≥25 kg/m2. Similarly, the model 
demonstrated strong performance across menopausal groups, 
achieving a concordance index of 0.75 (95% CI 0.71 to 0.79) 
in premenopausal women and 0.71 (95% CI 0.69 to 0.73) in 
postmenopausal women.

The Clinical model based on clinical characteristics without 
radiomic data had a concordance index of 0.73 (95% CI 0.72 
to 0.74), an integrated Brier score of 0.063 (95% CI 0.059 to 

Table 1  Participant characteristics and completeness of data

Characteristic MACE events (n=3392) No MACE events (n=45 804)
Missing data (n (%))
(n=49 196)

Demographics (mean (SD))

 � Age, years 64 (7.5) 60 (6.9) 22 (0.04%)

 � Height, cm 162 (7.2) 163 (7.2) 2061 (4.2%)

 � Weight, kg 76 (17.6) 72 (15.3) 1597 (3.3%)

 � Body mass index, kg/m2 29 (6.6) 27 (5.7) 2858 (5.8%)

Smoking (%) 354 (0.7%)

 � Current smoker 278 (8.2%) 2174 (4.7%)

 � Ex-smoker 1247 (36.8%) 16 315 (35.6%)

 � Never smoker 1833 (54%) 26 995 (58.9%)

 � Current drinker 2614 (77.1%) 38 807 (84.7%) 1202 (2.4%)

Medical history (%)

 � Breast cancer 36 (1.1%) 178 (0.4%) 1136 (2.3%)

 � Diabetes 465 (13.7%) 2428 (5.3%) 1126 (2.3%)

 � Chest radiotherapy 61 (1.8%) 384 (0.8%) 1655 (3.4%)

 � Breast biopsy 524 (15.4%) 6242 (13.6%) 1736 (3.5%)

Female reproductive history (%)

 � Parous 3136 (92.5%) 41 657 (90.9%) 131 (0.27%)

 � Postmenopausal 2935 (86.5%) 36 866 (80.5%) 1161 (2.4%)

 � Ever used oral contraceptives 2831 (83.5%) 40 533 (88.5%) 308 (0.6%)

 � Ever used hormone replacement therapy 1689 (49.8%) 17 862 (39%) 596 (1.2%)

Medication use (%)

 � Medications for diabetes 348 (10.3%) 1579 (3.4%) 229 (0.5%)

 � Medications for high cholesterol 1334 (39.3%) 9711 (21.2%) 229 (0.5%)

 � Any antihypertensive 1693 (49.9%) 11 712 (25.6%) 229 (0.5%)

  �  Beta blockers 299 (8.8%) 1461 (3.2%) 229 (0.5%)

  �  Calcium channel antagonists 389 (11.5%) 2051 (4.5%) 229 (0.5%)

  �  ACE inhibitors 813 (24%) 5422 (11.8%) 229 (0.5%)

  �  Angiotensin receptor antagonists 879 (25.9%) 6176 (13.5%) 880 (1.8%)

 � Antiplatelets 1052 (31%) 4455 (9.7%) 229 (0.5%)

Baseline’ was defined as time point at which participants consented to participation in the cohort and completed a health questionnaire. ‘MACE events’ were defined as those 
who experience an extended MACE during follow-up. ‘no MACE’ was defined as those who do not experience an extended MACE during follow-up. All variable comparisons 
between groups yielded significant p<0.0001 except for breast biopsy p=0.001.
MACE, major adverse cardiovascular event.
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0.065) and an integrated binomial log-likelihood of −0.22 (95% 
CI −0.23 to −0.21). The slope of the calibration plot was 1.00 
(95% CI 0.95 to 1.063). All performance metrics for the Clinical 
model are directly comparable to those for the Mammography 
model. The model built using age alone predicted extended 
MACE events with a concordance index of 0.64 (95% CI 0.63 
to 0.65) (table 2).

The Combined model that used clinical characteristics and 
radiomic data had a concordance index of 0.75 (95% CI 0.74 
to 0.76), an integrated Brier score of 0.058 (95% CI 0.054 to 
0.060) and an integrated binomial log-likelihood of −0.21 (95% 
CI −0.21 to −0.19). The slope of the calibration plot was 0.94 
(95% CI 0.87 to 1.00). Both the concordance index and the inte-
grated Brier score were marginally improved with the Combined 
model, though the integrated binomial log-likelihood and slopes 
of the calibration plots were broadly similar. Repeating the anal-
yses with the DeepHitSingle model showed comparable results 

to those obtained with the DeepSurv model (table  2, online 
supplemental figure 1).

Prediction of extended MACE using Cox proportional hazards 
model
The Cox proportional hazards model using baseline participant 
data had a Harrell’s C discrimination index of 0.72 (95% CI 
0.72 to 0.73) and a calibration plot’s slope of 0.96 (95% CI 0.90 
to 1.01). For comparison, the Harrell’s C discrimination indices 
for established risk scores compared with our ‘mammographic’ 
model, our ‘clinical’ risk factor model and our ‘combined’ model 
are shown in table 5 and figure 4. Beta coefficients and adjusted 
HR for the Cox proportional model are shown in online supple-
mental table 3 and receiver operator curves for all three models 
are shown in online supplemental figure 2.

DISCUSSION
The primary finding from these analyses was that a deep 
learning-based model using just routine screening mammog-
raphy images coupled with age was able to predict the risk of 
cardiovascular events in women. Further, the deep learning 
model had measures of accuracy, discrimination and calibration 
that compared favourably to traditional risk prediction methods 
including those based on cardiovascular risk factors and Cox 
proportional hazards models. This was true for comparisons of 
models based on mammography data and cardiovascular risk 
factor data made using machine learning within the Lifepool 
data, as well as for comparisons of machine learning models 
versus traditional models using the same data. It was also true 
when comparing the performance of the machine learning-based 
models derived from the Lifepool data against the performance 
of traditional risk prediction models generated using a range of 
external datasets reported in the literature.

There were small improvements in risk prediction metrics 
achieved with a more complex model that combined both 
mammography data and traditional cardiovascular risk factor 

Table 2  Risk prediction model statistics based on each set of features and DeepSurv

Input features Ctd IBS IBLL

1 Conventional radiomic signature
(two rounds)

0.619
(0.610 to 0.630)

0.062
(0.59 to 0.066)

−0.221
(−0.226 to −0.215)

2 Deep-learnt radiomic signature
(two rounds)

0.676
(0.667 to 0.684)

0.064
(0.623 to 0.068)

−0.228
(−0.234 to −0.220)

3 Deep-learnt radiomic signature
(only the first round)

0.652
(0.644 to 0.661)

0.066
(0.063 to 0.069)

−0.235
(−0.242 to −0.228)

4 Deep-learnt radiomic signature
(only the latest available round)

0.659
(0.651 to 0.668)

0.068
(0.065 to 0.071)

−0.234
(−0.241 to −0.227)

5 Deep-learnt radiomic signature and conventional signature
(two rounds)

0.699
(0.692 to 0.708)

0.062
(0.059 to 0.064)

−0.218
(−0.224 to −0.211)

6 Age 0.640
(0.634 to 0.651)

0.066
(0.063 to 0.071)

−0.233
(−0.238 to −0.225)

7 Age and deep-learnt radiomic signature 0.700
(0.692 to 0.709)

0.064
(0.061 to 0.066)

−0.227
(−0.232 to −0.219)

8 Mammography model
Age and deep-learnt radiomic signature and conventional signature
(two rounds)

0.719
(0.711 to 0.729)

0.060
(0.058 to 0.063)

−0.211
(−0.216 to −0.203)

9 Clinical model
(baseline for comparison)

0.728
(0.720 to 0.736)

0.063
(0.059 to 0.065)

−0.224
(−0.212 to −0.230)

For each performance metric, the best-performing value is shown in bold. Comparing rows 2, 3 and 4 suggests that there is a slight but significant improvement when using both 
screening rounds rather than a single round. Comparing rows 2 and 5 indicates a slight but statistically significant improvement when conventional radiomic features are added 
to deep learning-based radiomic features. Comparing rows 7 and 8 shows that, even after adding age to the deep learning-based features, incorporating conventional radiomic 
features results in a further slight but statistically significant improvement.
Ctd, time-dependent concordance; IBLL, integrated binomial log-likelihood; IBS, integrated Brier score; ICD, International Classification of Diseases.

Table 3  Cardiovascular (CV) events and follow-up recorded

Events (%) 
among 49 196 
participants

Person-years 
of follow-up

Crude event rate 
(95% CI) per 1000 
person years

Extended MACE 3392 (6.9) 443 603 7.6 (7.4 to 7.9)

Fatal extended MACE 258 (0.5) 456 364 0.5 (0.5 to 0.6)

Non-fatal extended MACE 3292 (6.7) 443 609 7.4 (7.2 to 7.7)

Myocardial infarction 656 (1.3) 453 978 1.4 (1.3 to 1.6)

Stroke 434 (0.9) 455 016 0.95 (0.9 to 1.6)

Atherosclerotic disease 2383 (4.8) 446 874 5.3 (5.1 to 5.5)

Heart failure 731 (1.5) 454 214 1.6 (1.5 to 1.7)

Extended MACE: myocardial infarction (ICD-I21, I22, I23), stroke (ICD-I63-I64), 
atherosclerotic disease (ICD-I20, I24, I25, I65-I66, I70-I77) and heart failure 
(ICD-I50) and CV death. CI for crude event rates were calculated using Poisson 
regression.
MACE, major adverse cardiovascular event.
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data. There are also models from other jurisdictions with supe-
rior metrics to all those achieved in our study, all based on Cox 
proportional hazards models. The higher performing models use 
more variables and wider age ranges, resulting in better discrim-
ination,18–21 but they are typically more resource intensive, less 
widely used as a consequence and can be inaccurate when avail-
able data are incomplete. Our mammographic model with a 
C-statistic of 0.72 performed well when comparing to models in 
similar cohorts, for example, the ‘PREDICT’ prediction model 
which reports a C-statistic of 0.73 for women.20

A key advantage of the mammography model we developed is 
that it did not require additional history taking or medical record 
data and leveraged an existing risk screening process widely used 
by women. Because of its simplicity, a mammography model may 
have the capacity to serve as a cardiovascular risk prediction tool 
for women in diverse communities across Australia and around 
the world. Mammography has potential as a ‘two-for-one’ risk 
assessment tool, offering efficiencies for both community and 
the healthcare system. A future prospective implementation 
trial with health economic evaluation is recommended to estab-
lish the clinical utility, acceptability and cost-effectiveness of 
mammography-based cardiovascular risk prediction.

Cardiovascular risk prediction is undeused in women for 
reasons that include gender bias in the delivery of services,3 
lack of resources in the healthcare system and the suboptimal 
performance of existing risk prediction algorithms in women.2 22 
Efforts to increase cardiovascular screening rates in women have 
been largely ineffective.23 A recent WHO report identified 
global cardiovascular risk screening programmes as inadequate 
and called for re-evaluation of population-level programmes 
and consideration of alternative approaches.24 By comparison, 
mammography is widely used for breast cancer screening, is often 
government-funded and has been shown to be highly effective 
in Australia.7 Mammography-based screening programmes have 
engaged women very effectively, with >67% of women in the 
USA and the UK participating in screening mammography.7 25 26

The use of mammography images to predict cardiovas-
cular risk is novel, but the use of machine learning models to 
do cardiovascular risk prediction is gaining traction. Machine 
learning models based on cardiovascular risk factors have been 
shown to outperform traditional risk prediction methods,19 27 28 
with better capacity to model nonlinear relationships between 
risks and outcomes identified as one possible advantage. More-
over, as seen in the study by Allen et al, and our study, using 

Table 4  Performance metrics for risk prediction models

Time-dependent concordance index
(95% CI)

Integrated Brier score
(95% CI)

Integrated binomial loglikelihood
(95% CI)

Machine learning risk prediction models based on Lifepool data

 � Mammography model (age and mammography data) 0.72 (0.71 to 0.73) 0.06 (0.06 to 0.06) −0.21 (−0.22 to −0.20)

 � Clinical model (age and clinical characteristics) 0.73 (0.72 to 0.74) 0.06 (0.06 to 0.07) −0.22 (−0.23 to −0.21)

 � Combined model (age, mammography data and clinical 
characteristics)

0.75 (0.74 to 0.76) 0.06 (0.05 to 0.06) −0.21 (−0.19 to −0.21)

Figure 3  Kaplan-Meier plots for the high-risk and low-risk groups based on the output of DeepSurv. Kaplan-Meier plot for the high-risk and low-risk 
groups. Based on output from DeepSurv which relies on age, deep-learnt and conventional radiomic features and on the median probability as the 
threshold (log rank test statistics=76.13, p<0.001). MACE, major adverse cardiovascular event.
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an automated machine-based methodology for identification 
of mammographic features for predicting cardiovascular risk 
is feasible and reliable.29 Further, by including whole breast 
mammographic features, our model aims to overcome the limita-
tions of using BAC alone. While BAC is linked with some cardio-
vascular risk factors, it is negatively associated with others, such 
as smoking, and has been demonstrated to be less accurate at 
predicting CV risk in older women.29 Our model offers a more 
comprehensive, automated assessment of breast characteristics.

This study benefits from the large sample size, long dura-
tion of follow-up, large number of outcome events recorded 
and the nested cross-validation methodology used for evalu-
ating the model’s performance. Nested cross-validation is supe-
rior to the traditional ‘hold-out’ validation method because it 
maximises data utilisation and reduces variance.16 The study 

also has some limitations. Normalisation was used to manage 
the issue of mammographic images being sourced from multiple 
different machines. This may be inadequate for ensuring seam-
less translation of deep learning models across different scan-
ners30 and risks information loss. Therefore, the deep learnt 
image features were complemented with conventional radiomic 
features extracted from the images prior to normalisation. In 
addition, the cardiovascular risk factors used for the comparator 
models were self-reported, and thus it was not possible to build 
machine learning-based models or Cox proportional hazards 
models for the Lifepool participants that directly matched 
external cardiovascular risk assessment tools. All deep learning 
models are restricted by their training datasets, and recalibra-
tion may be required for external validation in settings that 
use different mammographic machines, screening practices or 

Table 5  Performance of standard risk prediction models for comparison

Model C statistic (95% CIs) Mean age (STD) Age range (min-max) Prediction time window

Cox risk prediction model based on lifepool data 0.72 (0.71 to 0.73) 60 (7) 35–94 10 years

Cox risk prediction model based on other data

 � SCORE26 0.73 (0.73 to 0.73) and 0.77*
(0.76 to 0.77)

Not provided. 40–69 10 years

 � PCE model19 0.70 (0.55 to 0.83) 58 (8) 40–79 10 years

 � Cho et al28 0.75 (0.74 to 0.76) 58 (8) 40–79 5 years

 � PREDICT Model20 0.73 (0.72 to 0.73) 56 (9) (women) 30–74 5 years

 � Q RISK 321 0.86 (0.86 to 0.86) and 0.88* (0.88 to 0.88) 43 (15) (women) 25–84 10 years

 � WHO CV RISK CHARTS 201931 0.68 (0.63 to 0.74) to 0.83 (0.78 to 0.88)† 56 (9) 48–63 10 years

 � QR46 0.74 (0.74 to 0.74)
0.78*
(0.78 to 0.78)

39 (15) 18–84 10 years

 � PREVENT5 0.76 and 0.79* 53 (13) (women) 30–79 10 years

 � AusCVDRisk (external validation) ‡ Not available Not available 5 years

*C statistic for men and women, respectively.
†For different population subsets.
‡There are no external validated datasets for the AusCVDRisk score to date.
CV, cardiovascular.

Figure 4  Performance of standard risk prediction models compared with three models developed in this study. The C-statistics and the age ranges 
are from the references cited in table 2. Where a women-specific model was available, the C-statistic for that model is shown. *The WHO model is 
based on the model’s performance on the APCSC data. The mean age and STD are not provided in the paper, but the age range is 40–69 for this 
model. ‘Mammography model’ based on age and radiomic data, ‘clinical model’ based on clinical characteristics (all variables in table 1) without 
radiomic data. ‘Combined model’, based on clinical characteristics and radiomic data for this study.
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that assess different ethnic groups. Further, we were not able 
to directly compare our comprehensive algorithm to one based 
on BAC alone. Economic evaluation is out of the scope of this 
study, though a cost–benefit analysis of screening mammography 
cardiovascular risk prediction models should be performed 
before clinical application. Moving forward, the algorithm 
should be externally validated in additional, diverse cohorts, 
including populations with different ethnic compositions and 
screening practices, to assess generalisability and the need for 
recalibration. Implementation research should be undertaken 
to identify potential barriers and enablers to integration into 
routine practice.

CONCLUSIONS
A deep learning algorithm utilising routine mammograms and 
age shows promise as a cardiovascular risk prediction tool. 
Mammography may offer a cost-effective ‘two for one’ opportu-
nity to screen women for both breast cancer and cardiovascular 
risk, enabling broader cardiovascular risk screening for women 
than is currently achieved.
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