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ABSTRACT
Background  Current approaches for initial coronary 
artery disease (CAD) assessment rely on pretest probability 
(PTP) based on risk factors and presentations, with limited 
performance. Infrared thermography (IRT), a non-contact 
technology that detects surface temperature, has shown 
potential in assessing atherosclerosis-related conditions, 
particularly when measured from body regions such as 
faces. We aim to assess the feasibility of using facial IRT 
temperature information with machine learning for the 
prediction of CAD.
Methods  Individuals referred for invasive coronary 
angiography or coronary CT angiography (CCTA) were 
enrolled. Facial IRT images captured before confirmatory 
CAD examinations were used to develop and validate a 
deep-learning IRT image model for detecting CAD. We 
compared the performance of the IRT image model with 
the guideline-recommended PTP model on the area under 
the curve (AUC). In addition, interpretable IRT tabular 
features were extracted from IRT images to further 
validate the predictive value of IRT information.
Results  A total of 460 eligible participants (mean 
(SD) age, 58.4 (10.4) years; 126 (27.4%) female) were 
included. The IRT image model demonstrated outstanding 
performance (AUC 0.804, 95% CI 0.785 to 0.823) 
compared with the PTP models (AUC 0.713, 95% CI 0.691 
to 0.734). A consistent level of superior performance 
(AUC 0.796, 95% CI 0.782 to 0.811), achieved with 
comprehensive interpretable IRT features, further validated 
the predictive value of IRT information. Notably, even 
with only traditional temperature features, a satisfactory 
performance (AUC 0.786, 95% CI 0.769 to 0.803) was still 
upheld.
Conclusion  In this prospective study, we demonstrated 
the feasibility of using non-contact facial IRT information 
for CAD prediction.

INTRODUCTION
Coronary artery disease (CAD) is the leading 
cause of mortality and imposes a signifi-
cant disease burden worldwide.1 Accurate 
CAD assessment is crucial to inform appro-
priate downstream care. Current guidelines 

rely on pretest probability (PTP) tools to 
estimate CAD probability in suspected 
patients.2 3 However, these tools suffer from 
issues of subjectivity, modest precision and 
limited generalisability.3–5 Although supple-
mentary cardiovascular examinations such 
as electrocardiography and coronary artery 
calcium (CAC) score, or complex clinical 
models incorporating additional risk factors 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The current conventional approaches for initial 
coronary artery disease (CAD) assessment in clini-
cal practice mainly rely on pretest probability tools 
based on traditional risk factors and symptoms, 
which often exhibit limited prediction performance.

	⇒ Infrared thermography (IRT), a non-contact tech-
nology that captures surface temperature, has 
shown promising potential in assessing various 
atherosclerosis-related conditions but has not yet 
been evaluated for its clinical feasibility in predicting 
CAD.

WHAT THIS STUDY ADDS
	⇒ For suspected individuals referred for confirmatory 
CAD evaluation, we demonstrated that human fa-
cial temperature information captured by the non-
contact IRT can be effectively used by advanced 
machine learning algorithms for predicting CAD.

	⇒ Both an end-to-end, deep-learning-based facial IRT 
image analysis approach and an interpretable facial 
temperature variable extraction approach exhibited 
superior performance for CAD prediction, compared 
with conventional clinical methods.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Novel biophysiological information from facial tem-
perature offers the possibility of real-time, non-
contact CAD detection, which could potentially be 
adopted in clinical practice to improve the accuracy 
of CAD assessment and optimise the current clinical 
workflow.
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of comorbidities and laboratory markers, could improve 
CAD probability estimation, they often present chal-
lenges regarding procedural complexity, time efficiency 
and limited availability.6–10 Therefore, there is a need for 
more accurate CAD prediction tools that efficiently inte-
grate these different aspects of additional CAD-related 
information.

Infrared thermography (IRT) is a non-contact, real-
time imaging technology that captures temperature 
distribution and variations on the object’s surface by 
detecting self-emitted infrared radiation.11 This non-
invasive approach has emerged as a promising tool for 
disease assessment, as it can identify areas of abnormal 
blood circulation and inflammation activity through the 
measurement of skin temperature patterns. Studies in 
recent years have revealed strong associations between 
human body IRT temperature information and various 
conditions related to atherosclerotic cardiovascular 
disease (ASCVD), including carotid and peripheral 
artery diseases (PAD),12 13 diabetes,14 hyperlipidaemia,15 
metabolic syndrome16 and inflammatory conditions.17 18 
Among these studies, the human face has received partic-
ular attention due to its convenience and the previ-
ously reported link between human facial features and 
CAD risk.19 20 However, previous IRT studies have used 
simplistic, low-dimensional IRT information extracted 
and analysed with conventional statistical methods, which 
limited their ability to objectively and comprehensively 
quantify and use the wealth of information contained in 
IRT images. The advent of machine learning (ML) tech-
nology to extract, process and integrate complex infor-
mation has shown impressive capability in harnessing the 
myriad of imaging information for various disease predic-
tions.21–23 Therefore, we hypothesised that the IRT infor-
mation measured from human faces, with the aid of ML 
technology, could be fully used for CAD prediction in a 
non-contact manner.

This study aims to investigate the feasibility of using 
non-contact captured facial IRT temperature information 
for CAD prediction.

METHODS
Study design and participants
This is a prospective, single-centre, cross-sectional study 
(​ClinicalTrials.​gov Identifier: NCT04941560). Eligible 
adult participants undergoing invasive coronary angi-
ography (ICA) or coronary CT angiography (CCTA) at 
the National Center for Cardiovascular Disease, Fuwai 
Hospital were enrolled (detailed inclusion and exclusion 
criteria in online supplemental method S1). Informed 
consents were obtained from all eligible patients, with 
permission to use their facial IRT images, as well as 
required medical record data, for research-only deiden-
tified analysis. Our study followed the Transparent 
Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis reporting guideline (online 
supplemental table S1).24

Data collection
Trained clinical researchers collected baseline infor-
mation and conducted IRT filming. The participants’ 
presenting complaints, lifestyles, socioeconomic status, 
medical and family history, and medication usage were 
documented. The IRT filming was conducted in a confined 
room with air conditioning-controlled environmental 
temperature prior to the ICA or CCTA examination. 
Participants were seated in a stationary position, looking 
horizontally and naturally at an IRT camera (FLIR A315, 
FLIR Systems, USA) fixed at a distance of 1.5 m. The IRT 
filming commenced after proper positioning and align-
ment of the participant’s face and a 3 min resting period. 
The entire filming process lasted for at least 5 s with the 
participant maintaining a still and centred position in the 
IRT capturing frame. Further demographic information, 
clinical history and risk factors, baseline blood biochem-
istry results and confirmatory CAD workup findings were 
obtained by reviewing participants’ electronic medical 
records.

Data preparation and labelling
For each participant, one facial IRT image was selected 
and underwent preparation procedures before analyses, 
including greyscale conversion, background cropping 
and uniform resizing (online supplemental method S2). 
The prediction of interest in this study is the presence 
of CAD or not, as evidenced by ICA or CCTA findings, 
defined as a coronary lesion stenosis ≥50%. Two interven-
tional cardiologists or radiologists, blinded to the study 
design and patient information, independently reviewed 
ICA or CCTA findings to evaluate the presence and/
or degree of CAD lesions. Discrepancies were resolved 
through a third reviewer invited for final consensus.

Clinical and IRT image models for CAD prediction
To develop and evaluate CAD prediction models, we 
performed five repetitions of fivefold cross-validations 
with random shuffling.
i.	 IRT image model: We employed an advanced deep-

learning algorithmic framework optimised for 
relatively small-sample training while effectively le-
veraging relevant information to achieve satisfactory 
prediction performance. This framework comprises 
two essential components: the contrastive language-
image pretraining image encoder, known for its 
exceptional zero-shot capabilities in extracting high-
fidelity image features without task-specific training25 
and a vision transformer layer incorporating self-
attention mechanisms to capture global context and 
relationships within the image for better integration 
of local and global features.26 Additionally, a single 
fully connected layer served as the final classifier (de-
tailed algorithm description and training process in 
online supplemental method S3; algorithm frame-
work in online supplemental figure S1). This stream-
lined framework operated in an end-to-end manner 
for CAD prediction based on one single IRT image.
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ii.	 Models with clinical variables: Two CAD prediction 
models with clinical information were constructed 
for comparison with the IRT image model. (1) The 
guideline-recommended PTP model for CAD pre-
diction, which requires the patient’s age, sex and 
presenting symptom characteristics,3 7 served as the 
clinical baseline for predicting CAD. (2) A hybrid 
model that incorporated both clinical and IRT infor-
mation. Specifically, this model fused the clinical vari-
ables from the PTP model with the IRT information 
from the IRT image model, in order to assess whether 
there was any additional performance improvement 
from this joint data input.

IRT image model interpretation
To enhance our understanding of how IRT information 
contributes to CAD prediction, we conducted a series 
of interpretation analyses to gain insights into the IRT 
image model:
i.	 Occlusion experiments: To quantify the contribution 

of different IRT facial regions to model’s predictions, 
we sequentially occluded the corresponding region 
of interest (ROI) for each of the 10 facial regions. We 
then measured the individual impact of each occlu-
sion on the model’s performance.

ii.	 Saliency map visualisation: The gradient-weighted 
class activation map (Grad-CAM) method was em-
ployed to visually identify key areas in each facial IRT 
image that the algorithm focuses on for CAD predic-
tion (online supplemental method S4).27

iii.	 Dose–response analyses: To explore the potential 
causal relationship between facial IRT information 
and CAD status, we investigated the association be-
tween individuals’ CAD risk predicted by the IRT 
model and the CAD lesion severity.

iv.	 CAD surrogate label prediction: To further explore 
potential mechanisms by which IRT information may 
contribute to CAD prediction, we hypothesised that 
the IRT model’s predictive potential may derive from 
identifying various CAD-contributing or related as-
pects, represented by surrogate labels of ASCVD risk 
factors and other cardiovascular or inflammation 
markers. We tested this hypothesis by evaluating the 
performance of IRT models in predicting these sur-
rogate labels.

Interpretable IRT features for CAD prediction
To further validate our hypothesis regarding the predic-
tive value of IRT information for CAD and to obtain more 
human-interpretable insights, we extracted a diverse 

Figure 1  Flow chart of the study dataset and design. CABG, coronary artery bypass grafting; CAD, coronary artery disease; 
CCTA, coronary CT angiography; CLIP, contrastive language-image pretraining; ICA, invasive coronary angiography; IRT, 
infrared thermography; PCI, percutaneous coronary intervention; Temp., temperature; ViT, vision transformer.

https://dx.doi.org/10.1136/bmjhci-2023-100942
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Table 1  Baseline characteristics

Overall
(n=460)

CAD
(n=322)

No CAD
(n=138) P value

Age, mean (SD) 58.4 (10.4) 60.4 (9.7) 53.8 (10.6) <0.001

Female sex, n (%) 126 (27.4) 74 (23.0) 52 (37.7) 0.002

Smoking, n (%) 219 (47.6) 177 (55.0) 42 (30.4) <0.001

BMI, mean (SD) 25.5 (3.0) 25.6 (3.0) 25.2 (3.0) 0.155

Menopause, n (%) 107 (84.9) 71 (95.9) 36 (69.2) <0.001

Early ASCVD family history, n (%) 18 (3.9) 15 (4.7) 3 (2.2) 0.128

Hypertension, n (%) 267 (58.0) 215 (66.8) 52 (37.7) <0.001

Hyperlipidaemia, n (%) 348 (75.7) 295 (91.6) 53 (38.4) <0.001

Diabetes mellitus, n (%) 112 (24.3) 96 (29.8) 16 (11.6) <0.001

Cerebrovascular event, n (%) 67 (14.6) 59 (18.3) 8 (5.8) 0.001

Peripheral artery disease, n (%) 48 (10.4) 44 (13.7) 4 (2.9) 0.001

Congestive heart failure, n (%) 63 (13.7) 32 (9.9) 31 (22.5) 0.001

Chronic kidney disease, n (%) 5 (1.1) 4 (1.2) 1 (0.7) 1.00

COPD, n (%) 7 (1.5) 5 (1.6) 2 (1.4) 1.00

Atrial Fibrillation, n (%) 35 (7.6) 21 (6.5) 14 (10.1) 0.250

Chronic inflammatory disease, n (%) 18 (3.9) 14 (4.3) 4 (2.9) 0.637

CAD symptoms, n (%)

 � No symptoms 77 (16.7) 42 (13.0) 35 (25.4) 0.002

 � Non-anginal 102 (22.2) 70 (21.7) 32 (23.2)

 � Atypical 146 (31.7) 102 (31.7) 44 (31.9)

 � Typical 135 (29.3) 108 (33.5) 27 (19.6)

Regular medications

 � Aspirin, n (%) 191 (41.5) 173 (53.7) 18 (13.0) <0.001

 � Beta blocker, n (%) 116 (25.2) 92 (28.6) 24 (17.4) 0.016

 � Statin, n (%) 210 (45.7) 173 (53.7) 37 (26.8) <0.001

 � Nonstatin lipid-lowering drugs, n (%) 11 (2.4) 7 (2.2) 4 (2.9) 0.740

 � ACEI/ARB, n (%) 125 (27.2) 103 (32.0) 22 (15.9) 0.001

 � CCB, n (%) 121 (26.3) 94 (29.2) 27 (19.6) 0.042

Fast glucose, mean (SD) 6.3 (2.0) 6.5 (2.2) 5.7 (1.3) <0.001

Total cholesterol, mean (SD) 4.3 (1.2) 4.2 (1.2) 4.7 (1.1) <0.001

Triglyceride, mean (SD) 1.7 (1.7) 1.7 (1.9) 1.5 (0.9) 0.058

HDL, mean (SD) 1.2 (0.3) 1.2 (0.3) 1.3 (0.3) <0.001

LDL, mean (SD) 2.5 (1.0) 2.4 (0.9) 2.9 (1.0) <0.001

Haemoglobin A1c%, mean (SD) 6.3 (1.2) 6.4 (1.2) 5.9 (0.7) <0.001

ESR, mean (SD) 8.0 (9.6) 8.3 (10.2) 6.7 (5.8) 0.069

CRP, mean (SD) 3.6 (5.2) 3.7 (5.5) 3.0 (3.4) 0.231

LVEF, mean (SD) 63.2 (6.2) 62.5 (6.6) 65.1 (4.5) <0.001

Coronary confirmatory exam, n (%) <0.001

 � ICA 379 (82.4) 310 (96.3) 69 (50.0)

 � CCTA 81 (17.6) 12 (3.7) 69 (50.0)

Coronary Lesion severity, n (%) <0.001

 � No coronary stenosis >50% 138 (30.0) / 138 (100.0)

 � One vessel 89 (19.3) 89 (27.6) /

 � Two vessels 74 (16.1) 74 (23.0) /

 � Left main or three or more vessels 159 (34.6) 159 (49.4) /

ACEI/ARB, ACE inhibitor or angiotensin receptor blocker; ASCVD, atherosclerotic cardiovascular diseases; BMI, body mass index; CAD, coronary artery disease; 
CCB, calcium channel blocker; CCTA, coronary CT angiography; COPD, chronic obstructive pulmonary disease; CRP, C reactive protein; ESR, erythrocyte 
sedimentation rate; HDL, high-density lipoprotein; ICA, invasive coronary angiography; LDL, low-density lipoprotein; Lp(a), lipoprotein(a); LVEF, left ventricular 
ejection fraction.
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set of IRT tabular features from the IRT image. These 
features served as purer and more intuitive representa-
tions of underlying IRT information, reflecting facial 
temperature distribution. These extracted IRT features 
were categorised into two main levels: whole-face level 
and ROI-specific level. At the ROI-specific level, we parti-
tioned the image into 18 facial ROIs (online supple-
mental method S5) and extracted features, respectively, 
resulting in a total of 619 ROI-specific IRT features. In 
addition, nine features were extracted at the whole-face 
level. A total of 628 IRT features encompassed four cate-
gories, namely: traditional temperature features, first-
order texture features, second-order texture features 
and the fractal analysis feature (detailed description and 
a complete list of IRT features in online supplemental 
method S5 and table S2).

We employed the XGBoost algorithm, a gradient-
boosted decision tree approach,28 to integrate these 
extracted interpretable IRT features and assess their 
predictive values for CAD. We evaluated the performance 
of two approaches: one using all the interpretable IRT 
features and the other using only the traditional tempera-
ture features. The former comprehensive IRT feature 
approach aimed to approximate as much volume of IRT 
information as that used in the end-to-end IRT image 

model. Whereas, the traditional temperature feature-only 
approach was to explore the predictive values of tradi-
tional temperature variables, which can be more readily 
available in clinical practice even if an IRT camera is not 
readily accessible. We further leveraged the feature impor-
tance functionality inherent in tree-based ML models to 
obtain rankings of individual facial IRT features, which 
assigned importance scores to each feature based on their 
contributions to the overall model performance.

Statistical analysis
Data are presented as mean with SD or median with IQR 
for continuous variables, and percentages for categorical 
variables. Student’s t-test or Wilcoxon rank-sum test was 
used to compare continuous variables, while the χ2 test 
or Fisher’s exact test was used for categorical variables. 
The model’s discrimination performance was evaluated 
by area under the curve (AUC) with 95% CIs. All compar-
isons were two sided, with statistical significance defined 
as p<0.05, without adjustment for multiple comparisons. 
MATLAB V.R2021b (MathWorks, Massachusetts, USA) 
and Python V.3.10.5 were used for data preprocessing 
and model development, and R V.4.0.3 (R Foundation 
for Statistical Computing, Vienna, Austria) was used for 
plotting and statistical analysis.

Figure 2  Receiver operating characteristic curves of models performance for CAD prediction. The legend in the right lower 
corner indicates different CAD prediction models and their corresponding AUC estimates, as well as the 95% CIs. AUC, area 
under the curve; CAD, coronary artery disease; IRT, Infrared thermography; PTP, pretest probability.

https://dx.doi.org/10.1136/bmjhci-2023-100942
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RESULTS
Study participant overview
Between 6 September 2021 and 10 February 2023, a 
total of 893 adult participants undergoing ICA or CCTA 
evaluation were screened. After excluding 433 individ-
uals according to study criteria, 460 eligible participants 
were included. All participants underwent standard 
IRT filming, and their image quality was assessed, with 
all participants having at least one qualified IRT image, 
constituting the final analysis dataset (figure 1). Among 
this final dataset (460 participants with corresponding 
460 IRT images), the mean age was 58.4 (SD 10.4) and 
126 individuals (27.4%) were female. A total of 322 partic-
ipants (70.0%) were confirmed to have CAD. Table  1 
presents the baseline characteristics between CAD and 
non-CAD participants. Compared with non-CAD partici-
pants, those with CAD were older, more likely to be male, 

had a greater prevalence of lifestyle, clinical and labora-
tory risk factors for CAD, as well as more frequent use of 
primary prevention medications.

CAD prediction model performance
The performance of the individual CAD prediction 
models in the validation sets under the current five-
repeated fivefold cross-validation design is summarised 
in online supplemental table S3. In comparison to the 
guideline-recommended PTP model (AUC 0.713, 95% CI 
0.691 to 0.734), the IRT image model exhibited a consid-
erably higher performance (AUC 0.804, 95% CI 0.785 to 
0.823). Furthermore, when integrating clinical variables 
from the PTP models with the IRT image as joint input, 
the resulting IRT-PTP hybrid model (AUC 0.805, 95% CI 
0.793 to 0.827) did not yield a significant difference in 

Figure 3  Analyses of the interpretable IRT features for coronary artery disease (CAD) prediction. (A) Predictive performance for 
using all or traditional temperature-only IRT features for CAD prediction, as compared with the PTP model; (B) the ranking of the 
scaled importance value of the whole-face level features; (C) the ranking of the scaled importance value of the top 20 region of 
interest-level features. FD, fractal dimension; IRT, infrared thermography; L-R Δ, left-right difference; PTP, pretest probability; SX, 
sum of extrema; Temp., temperature; Δ, value difference.

https://dx.doi.org/10.1136/bmjhci-2023-100942
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performance improvement compared with the IRT image 
model alone (figure 2).

Interpretable IRT features for CAD prediction
Based on the manually extracted interpretable IRT 
features for further validation, both the all IRT feature 
approach (AUC 0.796, 95% CI 0.782 to 0.811) and the 
traditional temperature feature-only approach (AUC 
0.786, 95% CI 0.769 to 0.803) demonstrated superior 
performance (figure 3A), which closely aligned with the 
performance of the end-to-end IRT image model in utili-
sation of IRT information for CAD prediction.

The relative importance rankings of the interpre-
table IRT features for CAD prediction are depicted in 
figure  3B,C. At the whole-face level (figure  3B), of the 
three most significant features, the most influential 
one was the overall left-right temperature difference, 
followed by the maximal facial temperature, mean facial 
temperature and fractal dimension of facial temperature. 
Among the three most influential ROI-specific features 
(figure 3C), the mean temperature of the left jaw region 
exhibited the highest impact, followed by the tempera-
ture range of the right eye region and the left-right 
temperature difference of the left temple regions.

Interpretation of the IRT image model
The occlusion experiments (figure  4A) demonstrated 
varying degrees of reduction in the IRT image model 
performance when occluding different ROIs for any of 
the 10 facial regions. The largest decrease was observed 
when occluding the upper and lower lips (ie, the oral and 
perioral) region (ΔAUC=−0.035, 4.35%), followed by the 
left and right infraorbital (ΔAUC=−0.030, 3.68%) and 
cheeks (ΔAUC=−0.029, 3.56%), etc. In addition, exam-
ples of facial regions in the IRT image deemed important 
for the IRT image model prediction were visualised using 
the Grad-CAM method (figure  4B). Moreover, a trend 
of higher predicted CAD risk percentile was observed as 
CAD severity increased (figure 4C).

Table  2 presents the potential of the modified IRT 
image model to predict various surrogate labels associ-
ated with CAD. For ASCVD traditional risk factors, the 
image model demonstrated good performance in iden-
tifying hyperlipidaemia (0.831, 95% CI 0.811 to 0.850), 
male sex (0.988, 95% CI 0.985 to 0.991), smoking (0.749, 
95% CI 0.694 to 0.804), body mass index (mean absolute 
error (MAE) 2.593, 95% CI 2.147 to 3.038), HbA1C% 
(MAE 0.772, 95% CI 0.686 to 0.859), etc. Furthermore, 
the model also exhibited potential in identifying other 
cardiovascular (eg, NT-proBNP>300 pg/mL, 0.636 
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Figure 4  Interpretation and visualisation of the IRT image model. (A) Results of the occlusion tests in assessing the effect 
of individual facial regions after occlusion on the IRT image model’s predictive performance, measured by the degree of AUC 
reduction (ΔAUC); (B) visualisation of examples with specific facial regions deemed important for IRT image model prediction 
highlighted by the Gradient-weighted Class Activation Map methods; (C) dose–response relationship between the CAD lesion 
severity and the IRT image model predicted CAD risk percentiles. AUC, area under the curve; CAD, coronary artery disease; IRT, 
infrared thermography; LM, left main.
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(95% CI 0.593 to 0.678)) and inflammation-related labels 
(eg, chronic inflammatory diseases, 0.631 (95% CI 0.536 
to 0.726), elevated erythrocyte sedimentation rate, 0.645 
(95% CI 0.524 to 0.766), etc).

DISCUSSION
In this study, we have demonstrated the feasibility of 
using IRT temperature information from human faces 
to predict CAD in a non-contact manner. Our devel-
oped deep-learning IRT image model for CAD predic-
tion achieved superior performance compared with the 
current guideline-recommended PTP model that relied 
on traditional risk factors and clinical presentation for 
CAD assessment. The current findings highlighted the 
promising potential of facial temperature information 
in CAD assessment, which could be harnessed through 
either the end-to-end IRT image-based deep-learning 
approach or through a more interpretable temperature 
variable approach in clinical practice (figure 5).

The feasibility of IRT information for CAD prediction 
was built on previous evidence between IRT and ASCVD-
related conditions. For ASCVD risk factors, previous 
studies demonstrated that combining temperature and 
textural features from facial IRT images with clinical 
risk factors achieved high prediction accuracy for type 
II diabetes.14 Associations were also found between body 
surface temperature measured by IRT in specific regions 
and blood lipid levels.15 Distinct IRT distribution patterns, 
especially temperature asymmetry, have also been 
observed in individuals at high risk or with established 

CAD.29 Inflammation, an increasingly recognised non-
traditional risk factor contributing to ASCVD,30–32 has 
also been reflected in IRT images in various chronic 
inflammatory conditions.17 18 Therefore, it is possible 
that IRT information reflective of inflammation activity 
could be used in ASCVD prediction and evaluation. The 
potential of IRT in assessing established ASCVD diseases 
has also been explored in previous studies, including PAD 
from IRT measurements in peripheral extremities13 and 
carotid atherosclerosis detected by IRT obtained from 
neck and facial regions.12 33 In addition, studies have also 
investigated the dynamic temperature changes captured 
through IRT to reflect vascular function, which was further 
shown to be well correlated with ASCVD risk, CAC score 
and myocardial perfusion defects.34–36 However, previous 
studies generally employed simplistic approaches for IRT 
information extraction and analysis, which could limit 
their ability to comprehensively and objectively integrate 
the full breadth of IRT information for disease assess-
ment. In our study, we conducted surrogate label predic-
tion experiments to replicate and validate these previous 
findings. The observed overall strong performance of 
our IRT models in predicting these CAD-related surro-
gate labels further strengthens the pathophysiological 
plausibility and validity of facial IRT information for CAD 
prediction.

Internal validity and interpretability were prioritised 
in establishing the feasibility of IRT models in predicting 
CAD in the current study. The IRT image model employed 
a state-of-the-art deep-learning framework, allowing for 

Table 2  IRT model prediction for surrogate labels contributing or related to CAD

Surrogate labels AUC (95% CI) MAE (95% CI)

ASCVD traditional risk factors

 � Hyperlipidaemia 0.831 (0.811 to 0.850) /

 � Hypertension 0.640 (0.607 to 0.673) /

 � Diabetes mellitus 0.659 (0.573 to 0.745) /

 � Male 0.988 (0.985 to 0.991) /

 � Age / 8.23 (7.543 to 8.914)

 � Body mass index / 2.593 (2.147 to 3.038)

 � Smoking 0.749 (0.694 to 0.804) /

 � Early ASCVD family history 0.691 (0.587 to 0.795) /

 � HbA1C% / 0.772 (0.686 to 0.859)

Inflammation and other cardiovascular markers

 � Chronic inflammatory diseases 0.631 (0.536 to 0.726) /

 � Elevated ESR level* 0.645 (0.524 to 0.766) /

 � Elevated Inflammatory Markers† 0.601 (0.539 to 0.663) /

 � NT-proBNP>300 pg/mL 0.636 (0.593 to 0.678) /

*The elevated level refers to the laboratory value higher than the upper bound of reporting normal range.
†Inflammatory markers include ESR, C reactive protein and Interleukin-6.
ASCVD, atherosclerotic cardiovascular diseases; AUC, area under the curve; CAD, coronary artery disease; CRP, C reactive protein; ESR, 
erythrocyte sedimentation rate; HbA1C%, Hemoglobin A1C%; IRT, infrared thermography; MAE, mean absolute error; NT-proBNP, N-terminal 
pro-B-type natriuretic peptide.



9Kung M, et al. BMJ Health Care Inform 2024;31:e100942. doi:10.1136/bmjhci-2023-100942

Open access

robust extraction of high-fidelity image features and reli-
able prediction for our specific downstream task, even 
with a relatively small training sample size. Notably, the 
addition of clinical variables to the IRT image model did 
not yield further improvements compared with the stand-
alone end-to-end IRT image-based approach, suggesting 
that the facial IRT information extracted by the algorithm 
may already encompass relevant clinical information asso-
ciated with CAD. Model interpretation also confirmed 
that the deep-learning algorithm focused on potentially 
relevant facial IRT areas and helped identify important 
facial regions contributing to predictions. Further-
more, the observed dose–response relationship between 
predicted CAD risk and CAD severity further bolstered 
the model’s credibility. The predictive value of IRT infor-
mation for CAD was further validated by the interpretable 
IRT tabular features, which could also avoid potential 
inclusion of irrelevant image details that might give away 
the prediction label and thus inflate performance.37 
Importantly, this interpretable IRT tabular feature-based 
approach demonstrated relatively consistent perfor-
mance as the deep-learning IRT image model. With these 
human-interpretable IRT features, we also gained insights 
into specific aspects of facial IRT temperature informa-
tion deemed important for the CAD predictions, with 

prominent aspects such as facial temperature asymmetry 
and distribution non-uniformity.

The feasibility of IRT temperature-based CAD predic-
tion suggests potential future applications and research 
opportunities. As a biophysiological-based health assess-
ment modality, IRT provides disease-relevant information 
beyond traditional clinical measures that could enhance 
ASCVD and related chronic condition assessment. The 
non-contact, real-time nature of the end-to-end IRT 
image model allows for instant disease assessment at the 
point of care, which could streamline clinical workflows 
and save time for important physician–patient decision-
making. In addition, it has the potential to enable mass 
prescreening for more cost-effective adoption of down-
stream screening modalities (eg, CAC score). Deploying 
IRT-based assessment in a non-contact and passive moni-
toring manner could also enable continuous evaluation 
of disease progression in the daily living spaces outside of 
regular clinic visits.38 Depending on resource availability, 
the temperature-based CAD assessment could be adopted 
accordingly with satisfactory performance, from the more 
widely available traditional temperature features that 
could be measured with regular thermometer, to the end-
to-end IRT-based imaging approach that uses validated IR 
cameras with good reproducibility and minimal operator 

Figure 5  Central illustration. CAD, coronary artery disease; CLIP, contrastive language-image pretraining; FD fractal dimension; 
IRT, infrared thermography; L-R Δ, left-right difference; PTP, pretest probability; SX, sum of extrema; Temp., temperature; ViT, 
vision transformer; Δ, value difference.
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training. Importantly, IR temperature-based prediction 
tools have several inherent advantages that enhance their 
trustworthiness for healthcare providers, including its 
physiologically sound mechanism, high reproducibility 
and user-friendly operation.

Several limitations should be acknowledged in the 
current study. First, the relatively small sample size may 
have limited the performance of current IRT algorithms. 
To address this limitation, we employed ML algorithms 
with simplistic structure optimised for small-sample 
prediction tasks, which minimised the training require-
ments while still achieving valid and satisfactory perfor-
mance. Second, the study was conducted in a single-centre 
cohort, necessitating external validation from diverse 
patient populations in multicentre studies. Lastly, the 
study participants were patients referred for confirmatory 
CAD examinations, and therefore, represented a higher 
PTP spectrum, which could limit the generalisability 
of current findings. Future research should include a 
broader spectrum of patients for CAD evaluation.

CONCLUSION
In this diagnostic study, we have examined and established 
the feasibility of using non-contact captured human facial 
temperature information by IRT in predicting CAD. Our 
developed IRT prediction models, based on advanced 
ML technology, have exhibited promising potential 
compared with the current conventional clinical tools. 
Further investigations incorporating larger sample sizes 
and diverse patient populations are needed to validate the 
external validity and generalisability of current findings.
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