

¹ Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

² Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Correspondence to: E Giovannucci
egiovann@hsp.harvard.edu

Cite this as: *BMJ* 2026;392:r2613
<http://doi.org/10.1136/bmj.r2613>

Preservatives and risk of cancer

Potential carcinogenic effects of preservative food additives require further validation

Xinyu Wang,¹ Edward Giovannucci^{1,2}

Preservative food additives are extensively used in the modern food industry to extend shelf life by inhibiting microbial growth and slowing chemical changes that lead to spoilage.¹ Growing concerns have emerged about the potential health effects of some preservatives. For example, experimental studies have shown that nitrates and nitrites (preservatives added to processed meats) can be converted endogenously to N-nitroso compounds—proven carcinogens in animals and potential carcinogens in humans.² Recognizing the risks, the European Food Safety Authority has established acceptable daily intake levels for nitrates and nitrites.³ However, epidemiological evidence linking preservative additives to cancer risk remains scarce, largely because of limited data on the specific industrial food products consumed and the considerable variation in additive levels across brands.

In this context, Hasenböhler and colleagues (doi:10.1136/bmj-2025-084917) comprehensively examined the association between exposure to preservative food additives and the risk of cancer in a linked study among 105 260 adults in NutriNet-Santé, a large prospective cohort study in France.⁴ Total intake of non-antioxidant preservatives was associated with a modestly increased risk of overall cancer (hazard ratio of 1.16 comparing highest versus lowest sex specific thirds of consumption). A major strength of this study was its detailed assessment of preservative intake, through repeated 24 hour dietary records linked dynamically to food composition databases and supplemented by ad hoc laboratory assays. Adjustment for nutritional profiles, preservatives from natural sources, and other food additives associated with cancer^{5,6} enabled a clearer assessment of the independent association of preservative additives. However, given the modest increased risk estimates, causality cannot be established and unmeasured or residual confounding cannot be ruled out, especially considering the strong correlations between some preservatives and their food vectors. For example, nitrates and nitrites were consumed mainly through processed meats, whereas sulfites were consumed predominantly from alcoholic beverages—both classified as carcinogenic to humans.^{7,8} It is uncertain to what extent the observed associations (hazard ratio 1.32 between sodium nitrite and prostate cancer, 1.22 between potassium nitrate and breast cancer) may be attributed to other constituents and metabolites of processed meat (eg, heterocyclic amines and polycyclic aromatic hydrocarbons) and alcohol beverages (eg, acetaldehyde) implicated in carcinogenesis.⁹⁻¹¹

Rising consumer demand for “more natural” preservation methods has driven a shift from artificial

towards natural alternatives.¹ In Hasenböhler and colleagues’ study, the natural preservatives assessed were limited to a few compounds: plant derived (eg, rosemary extract), animal derived (eg, lysozyme), and microorganism derived (eg, nisin). The authors reported an inverse association between rosemary extract and colorectal cancer, although based on limited cases. A prior analysis of the same database¹² found that only nitrite and nitrate additives were associated with cancer risk, with no associations observed for total nitrite or nitrate intake or for intakes from natural sources. The authors hypothesized that the high antioxidant content of vegetables may reduce the carcinogenic potential of naturally occurring nitrates and nitrates. It remains unclear whether synthetic preservatives are more harmful than natural ones.

Hasenböhler and colleagues’ study was constrained by limited statistical power for certain site specific cancers, such as colorectal cancer. Future research priorities include conducting larger and longer term prospective studies in diverse populations; randomized trials exploring dietary modifications, such as manipulating the intake of preservatives; and mechanistic investigations to elucidate the biological pathways through which potential risks may arise. A promising direction is to integrate multi-omics approaches such as the metabolome¹³ and microbiome^{14,15} with traditional dietary assessments to identify sensitive and specific biomarkers of preservative intakes.¹⁶ Moreover, because various additives and food chemicals often coexist in processed foods, further epidemiological and experimental studies are needed to elucidate the combined and interactive effects of preservatives with other chemical components.

From a policy perspective, preservatives offer clear benefits by extending shelf life and lowering food costs, which can be particularly important for populations with lower incomes. However, the widespread and often insufficiently monitored use of these additives, with uncertainties of their long term health effects, call for a more balanced approach. Currently, the US Food and Drug Administration evaluates the premarket safety of food additives, but a formal approach for reviewing food additives already present in the food supply is lacking.¹⁷ Findings from NutriNet-Santé may prompt regulatory agencies to revisit existing policies, such as setting stricter limits on use, requiring clearer labeling, and mandating disclosure of additive contents. Furthermore, collaborative global monitoring initiatives, similar to those implemented for trans fatty acids and sodium, could also support evidence based risk assessments and guide reformulation by the food industry.^{18,19} At the

individual level, public health guidance is already more definitive about the reduction of processed meat and alcohol intake, offering actionable steps even as evidence on the carcinogenic effects of preservatives is evolving.

Competing interests: The BMJ has judged that there are no disqualifying financial ties to commercial companies. The authors declare the following other interests: none.

Provenance and peer review: Commissioned; not externally peer reviewed.

- 1 *Encyclopedia of Food and Health*. Academic Press, 2016: -9doi: 10.1016/B978-0-12-384947-2.00568-7.
- 2 International Agency for Research on Cancer. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 94, 2010. <https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Ingested-Nitrate-And-Nitrite-And-Cyanobacterial-Peptide-Toxins-2010>
- 3 European Food Safety Authority. Food additives. 2015. <https://www.efsa.europa.eu/en/topics/topic/food-additives>
- 4 Hasenböhler A, Javaux G, Payen de la Garanderie M, et al. Intake of food additive preservatives and incidence of cancer: results from the NutriNet-Santé prospective cohort. *BMJ* 2026;392:e084917.
- 5 Sellem L, Srour B, Javaux G, et al. Food additive emulsifiers and cancer risk: Results from the French prospective NutriNet-Santé cohort. *PLoS Med* 2024;21:e1004338 pmid: 38349899 doi: 10.1371/journal.pmed.1004338
- 6 Debras C, Chazelas E, Srour B, et al. Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. *PLoS Med* 2022;19:e1003950. doi: 10.1371/journal.pmed.1003950 pmid: 35324894
- 7 International Agency for Research on Cancer. Personal habits and indoor combustions. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100E, 2012. <https://publications.iarc.who.int/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Personal-Habits-And-Indoor-Combustions-2012>.
- 8 International Agency for Research on Cancer. Red meat and processed meat. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 114, 2018. <https://publications.iarc.who.int/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Red-Meat-And-Processed-Meat-2018>.
- 9 Lu J, Zhang Y, Zhou H, Cai K, Xu B. A review of hazards in meat products: Multiple pathways, hazards and mitigation of polycyclic aromatic hydrocarbons. *Food Chem* 2024;445:138718. doi: 10.1016/j.foodchem.2024.138718 pmid: 38364501
- 10 Batool Z, Singla RK, Ullah A, Ahmed S, Shen B. A comprehensive review on dietary heterocyclic amines as potential carcinogens: From formation to cancer incidence. *Food Chem* 2025;488:144874. doi: 10.1016/j.foodchem.2025.144874 pmid: 40413939
- 11 Rumgay H, Murphy N, Ferrari P, Soerjomataram I. Alcohol and cancer: Epidemiology and biological mechanisms. *Nutrients* 2021;13. doi: 10.3390/nu13093173 pmid: 34579050
- 12 Chazelas E, Pierre F, Druesne-Pecollo N, et al. Nitrites and nitrates from food additives and natural sources and cancer risk: results from the NutriNet-Santé cohort. *Int J Epidemiol* 2022;51:19. doi: 10.1093/ije/dyac046 pmid: 35303088
- 13 Guertin KA, Moore SC, Sampson JN, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. *Am J Clin Nutr* 2014;100:17. doi: 10.3945/ajcn.113.078758 pmid: 24740205
- 14 Gerasimidis K, Bryden K, Chen X, et al. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. *Eur J Nutr* 2020;59:30. doi: 10.1007/s00394-019-02161-8 pmid: 31853641
- 15 Schell LD, Chadaideh KS, Allen-Blevins CR, Venable EM, Carmody RN. Dietary preservatives alter the gut microbiota in vitro and in vivo with sex-specific consequences for host metabolic development in a mouse model. *Am J Clin Nutr* 2025;122:34. doi: 10.1016/j.ajcnut.2025.04.010 pmid: 40250761
- 16 Maruvada P, Lampe JW, Wishart DS, et al. Perspective: Dietary biomarkers of intake and exposure-exploration with omics approaches. *Adv Nutr* 2020;11:15. doi: 10.1093/advances/nmz075 pmid: 31386148
- 17 Pomeranz JL, Broad Leib EM, Mozaffarian D. Regulation of Added Substances in the Food Supply by the Food and Drug Administration Human Foods Program. *Am J Public Health* 2024;114:70. doi: 10.2105/AJPH.2024.307755 pmid: 39116397
- 18 Pan American Health Organization. Plan of Action for the Elimination of Industrially Produced Trans-Fatty Acids 2020-2025. 2020. <https://iris.paho.org/items/7b957413-2d5d-4454-bdc6-aa7854f2dc0f>
- 19 World Health Organization. The SHAKE technical package for salt reduction. World Health Organization. 2016. <https://iris.who.int/handle/10665/250135>