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ABSTRACT
Background/aims To assess the performance of 
deep- learning (DL) models for prediction of conversion 
to normal- tension glaucoma (NTG) in normotensive 
glaucoma suspect (GS) patients.
Methods Datasets of 12 458 GS eyes were reviewed. 
Two hundred and ten eyes (105 eyes showing NTG 
conversion and 105 without conversion), followed up for 
a minimum of 7 years during which intraocular pressure 
(IOP) was lower than 21 mm Hg, were included. The 
features of two fundus images (optic disc photography 
and red- free retinal nerve fibre layer (RNFL) photography) 
were extracted by convolutional auto encoder. The 
extracted features as well as 15 clinical features 
including age, sex, IOP, spherical equivalent, central 
corneal thickness, axial length, average circumpapillary 
RNFL thickness, systolic/diastolic blood pressure and 
body mass index were used to predict NTG conversion. 
Prediction was performed using three machine- learning 
classifiers (ie, XGBoost, Random Forest, Gradient 
Boosting) with different feature combinations.
Results All three algorithms achieved high diagnostic 
accuracy for NTG conversion prediction. The AUCs ranged 
from 0.987 (95% CI 0.978 to 1.000; Random Forest 
trained with both fundus images and clinical features) 
and 0.994 (95% CI 0.984 to 1.000; XGBoost trained 
with both fundus images and clinical features). XGBoost 
showed the best prediction performance for time to 
NTG conversion (mean squared error, 2.24). The top 
three important clinical features for time- to- conversion 
prediction were baseline IOP, diastolic blood pressure 
and average circumpapillary RNFL thickness.
Conclusion DL models, trained with both fundus 
images and clinical data, showed the potential to predict 
whether and when normotensive GS patients will show 
conversion to NTG.

INTRODUCTION
Glaucoma suspect (GS) is the status of a person for 
whom clinical findings or a combination of clinical 
findings and related risk factors indicate an increased 
likelihood of developing glaucoma.1 Among all GS 
individuals, eyes showing possible or suspected 
early- glaucomatous optic nerve head (ONH) 
features are particularly challenging for clinicians. 
Unlike the abundance of longitudinal data on ocular 
hypertensive GS cases,2–6 there is little information 
on cases of suspicious- looking ONH with normal- 
range intraocular pressure (IOP). Because microvas-
cular abnormality and vascular imbalance have been 
suggested as risk factors for glaucoma, especially in 
cases of lower- baseline IOP,7 various clinical factors 

need to be taken into account in order to determine 
the best management approaches for such patients.

Recent advances in artificial intelligence (AI), 
especially in the forms of deep learning (DL) 
models, have inspired researchers to develop algo-
rithms for diagnosis of glaucoma and detection of 
its progression.8 9 As for prediction of functional 
glaucomatous progression, a significant number 
of unsupervised and supervised models such as 
Random Forest, Bayesian techniques and recurrent 
neural networks have been tested, and promising 
results then have been reported.10–13 However, 
none of the previous studies had developed an algo-
rithm for identification of GS patients who are at 
higher risk of progression to perimetric glaucoma. 
Predicting patients for whom there is a greater 
possibility of visual field (VF) defect could enable 
better risk stratification and IOP- lowering therapy 
application in efforts to preserve visual functional 
and, thus, quality of life.14 15

In actual clinical practice, diagnosis and conse-
quent treatment decisions are made based on various 
test results, risk factors and concomitant diseases. 
However, relatively few studies have attempted to 
employ clinical data in the training of AI models. 
In the present study, baseline features that were 
extracted from both fundus images and compre-
hensive clinical datasets pertaining to a longitudinal 
cohort that had been followed for longer than 7 
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years were used as the input variables. Then, the ability of AI 
algorithms to predict normal- tension glaucoma (NTG) conver-
sion in normotensive GS patients were compared. Additionally, 
for those normotensive GS patients who developed NTG, time- 
to- conversion and associated factors were determined.

METHODS
Study subjects and data collection
Clinical and in- office testing data were obtained from the Clinical 
Data Warehouse (CDW) of Seoul National University Hospital 
Patients Research Environment and represent the routine clinical 
care of the patients involved.

The patients’ specific inclusion criteria were as follows: (1) 
diagnosed as GS, (2) followed up every 6–12 months for a 
minimum of 7 years, (3) all IOP measurements below 21 mm 
Hg during the entire follow- up and (4) without IOP- lowering 
treatment unless a VF defect had been identified. Diagnosis 
for GS required identification of at least one of the following 
features16: vertical cup- to- disc ratio (vCDR) ≥0.6; difference 
in vCDR between two eyes ≥0.2; presence of glaucomatous 
optic nerve damage (eg, diffuse and/or localised notching, thin-
ning) without retinal nerve fibre layer (RNFL) defect as visible 
on red- free RNFL images. The vertical disc diameter measure-
ments for assessment of vCDR excluded areas of peripapillary 
atrophy as well as the Elschnig scleral ring. The cup’s vertical 
diameter was measured as the vertical distance between the 
maximal centrifugal extension points at 11–1 o’clock and 5–7 
o’clock.17 Open angle was confirmed by gonioscopy, and normal 
VF results in standard automated perimetry (SAP, Humphrey 
30–2 SITA- standard; Carl Zeiss Meditec, Dublin, California, 
USA) at two consecutive reliable examinations. Patients were 
excluded for any of the following reasons at any time during the 
entire follow- up period: spherical equivalent (SE) more than±6 
dioptres; stigma of conditions that could result in temporary or 
intermittent IOP elevation, such as uveitis or pigment dispersion, 
or any other diseases possibly affecting VF examination results.

The following data were collected for analysis at the initial 
visit: baseline IOP by Goldmann applanation tonometry (Haag- 
Streit, Koniz, Switzerland); refraction (KR- 890; Topcon, Tokyo, 
Japan); RNFL thickness by Cirrus high- definition spectral 
domain- optical coherence tomography (SD- OCT) (Carl Zeiss 
Meditec); central corneal thickness (CCT, Orbscan 73 II, Bausch 
and Lomb Surgical, Rochester, New York, USA), axial length 
(AXIS- II ultrasonic biometer; Quantel Medical SA, Bozeman, 
Missouri, USA), ocular and medical disease history, family 
history of glaucoma, systolic and diastolic blood pressure, and 
height and weight data for calculation of body mass index (BMI). 
Patients with missing data in any of these columns were excluded 
from further analysis.

Retinal-imaging data preparation
Digital colour stereo optic disc photography (ODP, CF‐60UVi/
D60; Canon, Tokyo, Japan) and red- free RNFL photography 
(TRC- 50IX; Topcon) were obtained after pupil dilation. The 
images were saved in the 448×448- pixel digital imaging and 
communications in medicine format and stored in the picture 
archiving communication system of Seoul National University 
Hospital.

Determination of conversion to perimetric NTG
The SAP data from all visits for all patients were assessed inde-
pendently by two glaucoma specialists (AH/YKK) in a masked 
fashion (ie, without knowledge of any clinical information). 
Glaucomatous VF defect was defined as (1) glaucoma hemi-
field test values outside the normal limits or (2) three or more 
abnormal contiguous points with a probability of p<0.05 on a 
pattern deviation plot, of which at least one point has a proba-
bility of p<0.01, or (3) a pattern SD of p<0.05. A confirmed VF 
defect required abnormal results showing damage in the same 
test locations on two consecutive reliable tests (fixation loss 
rate ≤20%, false- positive and false- negative error rates ≤25%). 

Figure 1 Overall design of deep learning network. Colour stereo optic disc photography (ODP) along with red- free retinal nerve fibre layer 
photography features were extracted by the convolutional auto encoder (left), and the features thus extracted were fed into machine- learning 
classifiers to identify normal- tension glaucoma (NTG) conversion eyes (middle) and predict time to NTG conversion (right). AL, axial length; BMI, 
body mass index; BP, blood pressure; CCT, central corneal thickness; DM, diabetes mellitus; IOP, intraocular pressure; SE, spherical equivalent.
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Confirmation that the VF defect could be attributed to glau-
comatous damage without the possibility of artifact- caused VF 
abnormality was based on a masked clinical- chart review by a 
third examiner (KHP).

Design of overall system
The overall prediction system consisted of the three steps 
shown in figure 1. In the first step, the features of two fundus 
images (ODP and red- free RNFL photography) were extracted 
by convolutional auto encoder (CAE). In the second step, the 
extracted features from images as well as clinical features were 
fed into machine- learning classifiers for prediction of whether 
or not a patient would show conversion to NTG. The following 
clinical parameters (total 15) obtained at the initial visit had 
been entered as clinical features for model training: age, sex, 
laterality, IOP, SE, CCT, axial length, average circumpapillary 
RNFL (cpRNFL) thickness, presence of diabetes mellitus, family 
history of glaucoma, systolic blood pressure, diastolic blood 
pressure, height, weight and BMI. In the third and final step, 
time to NTG conversion was predicted using a regressor. The 
detailed architecture of the CAE network is described in online- 
only text in online supplemental eFigures 1–3.

Prediction of conversion to NTG
A total of 40 features from 2 input images were extracted from 
the latent vector of the CAE, with 15 features from the clinical 
information. Thus, a total of 55 features were used to predict 
conversion to NTG. Prediction was performed using XGBoost,18 
Random Forest19 and Gradient Boosting classifiers20 with 5 
feature combinations: both fundus images and clinical features 
(total: 55 features), ODP and red- free RNFL photography (40 
features), ODP and clinical features (35 features), red- free RNFL 
photography with clinical features (35 features) and only clin-
ical features (15 features). Fivefold cross- validation with random 
and grid search methods was used for hyperparameter optimis-
ation only on the training data, not on the test set (see online- 
only text in online supplemental file 1). To calculate the CI, a 
bootstrapping method was used.

Prediction of time to NTG conversion
In order to predict time to NTG conversion, regression was 
performed using the three classifiers with five feature combi-
nations, as described above. As in the prediction of conversion 
to NTG, fivefold cross- validation with random and grid search 
methods was used for hyperparameter optimisation only on the 
training data, not on the test set. The hyperparameter was opti-
mised using the root mean squared log error, and the Bootstrap-
ping method was used to calculate the CI.
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Outcome metrics
Specificity and sensitivity values were calculated with a randomly 
selected held- out test set. The area under the receiver operating 
characteristic curve (AUC) generated on the same test set was 
used to compare the performances of the individual models. To 
compare the AUCs among the different algorithms, DeLong’s 
test was used. Additionally, in order to identify key risk factors 
for conversion to NTG, top- ranked features were selected based 
on the feature importance scores assigned to the variables in each 
model. All of the data processing and analysis was implemented 
in Python V.3.9 and Scikit- learn V.0.24.0.21

RESULTS
Demographic and clinical characteristics of study population
Datasets on 12 458 patients diagnosed with GS were reviewed 
for the purposes of the present study. After the inclusion and 
exclusion criteria were applied, we identified 105 eyes showing 
conversion to NTG during the follow- up period. Since imbal-
anced classes would lead algorithms to skew toward the majority, 
we performed under- sampling in the dataset for eyes that did 
not show conversion to NTG.22 That is, patients who met the 
inclusion criteria and did not show NTG conversion for a period 
of over 7 years were consecutively included until a balance 
was reached between the classes. Although the first 105 non- 
conversion patients were selected by sampling time, the prob-
ability of sampling bias was low, since the selection of patients 
with a GS diagnosis in the CDW was performed randomly. 
Finally, a total of 210 eyes of 210 patients representing 1334 
person- years made up the final datasets. Among the 210 eyes, 70 
were set aside for the test set (online supplemental eFigure 4).

The mean age of the included patients was 55.8±9.5 (range: 
33–76) years, and the mean baseline IOP was 14.8±2.9 (range: 
7–20) mm Hg. Further characteristics of the study population 
are available in online supplemental eTable 1. As one of the main 
purposes of this study was to identify clinical factors (including 

Table 1 Performance of each model for prediction of conversion to NTG

Model Dataset AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

XGBoost Both fundus images*+clinical data 0.994
(0.984 to 1.000)

97.14
(88.11 to 98.57)

0.974
(0.868 to 0.974)

0.969
(0.750 to 1.000)

Random Forest Both fundus images*+clinical data 0.987
(0.978 to 1.000)

95.80
(84.61 to 97.71)

0.974
(0.895 to 1.000)

0.969
(0.906 to 1.000)

Gradient Boosting Clinical data only 0.988
(0.969 to 0.997)

91.43
(82.03 to 96.14)

0.868
(0.684 to 1.000)

0.969
(0.795 to 0.974)

*Colour stereo optic disc photography and red- free retinal nerve fibre layer photography.
AUC, area under the curve; NTG, normal- tension glaucoma.

Table 2 Performance of each model for prediction of time to NTG 
conversion

Model Dataset MSE

XGBoost Both fundus images*+clinical data 2.24

Random forest Both fundus images*+clinical data 2.96

Gradient boosting Clinical data 2.77

*Colour stereo optic disc photography and red- free retinal nerve fibre layer 
photography.
MSE, mean squared error; NTG, normal- tension glaucoma.
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demographics) influencing disease progression, rather than 
examining the impact of a specific factor, we performed further 
analysis without demographic matching.

Prediction of conversion to NTG
For the test dataset, the performance of each designed network 
for the feature combinations showing the best performance is 
indicated in table 1. XGBoost trained with both fundus images 
and clinical features showed the highest performance: the AUC 
and accuracy were 0.994 (95% CI 0.984 to 1.000) and 97.14% 
(95% CI 88.11% to 98.57%), respectively. Prediction performed 
using Random Forest showed the best results with both fundus 
images and clinical data: the AUC and accuracy were 0.987 (95% 
CI 0.978 to 1.000) and 95.80% (95% CI 84.61% to 97.71%), 
respectively. The Gradient Boosting algorithm performed best 
when using only clinical data in the training phase: the AUC 
and accuracy were 0.988 (95% CI 0.969 to 0.997) and 91.43% 
(95% CI 82.03% to 96.14%), respectively. The AUCs among 
the three algorithms were not statistically different (Ps>0.05). 
The performances of each model with different feature combi-
nations were shown in online supplemental eTable 2. The results 
of the analysis, including cases where the exclusion criteria were 
applied only to the initial data, are in online supplemental eTable 
3.

Prediction of time to NTG conversion
The performance of each designed network for the feature 
combinations showing the best performance on the test dataset 
is indicated in table 2. XGBoost trained with both fundus images 
and clinical data showed the least MSE, 2.24. Figure 2 visually 
represents the results of time- to- NTG- conversion predictions 
with the XGBoost classifier and the ground truth. Among the 
patients who did not develop NTG during the entire follow- up 
period, two cases misclassified as NTG conversion were included 
in the analysis of time- to- conversion prediction. In these cases 
(patient numbers 33 and 34), the predicted values were above 
5 years. Online supplemental eTable 4 shows the MSE time- to- 
conversion values predicted at the baseline using each feature for 
each classifier.

Feature importance
The feature importance in each network for prediction of time 
to NTG conversion was extracted using the Scikit- learn library 
‘feature_importances_’ attributes in each classifier and regressor 
(table 3). Among the 15 clinical features, baseline IOP, diastolic 
blood pressure and average cpRNFL thickness were identified, 
in both the XGBoost and Gradient Boosting models, as the top 
three important features. In the Random Forest model, mean-
while, diastolic blood pressure, average cpRNFL thickness and 
CCT were the top three features. The methodology and func-
tions for generating feature importance are described in the 
online- only text in online supplemental file 1.

DISCUSSION
In the present study, the performances of DL classifiers in 
predicting conversion to NTG in normotensive GS patients were 
evaluated. Also, feature importance to searches of factors poten-
tially impacting on disease progression was calculated. All three 
of the DL models showed acceptable accuracy and AUC values 
in predicting NTG progression using baseline clinical measure-
ments as well as fundus images.

Having an architecture capable of incorporating multiple 
data sources is key to effectively combining information used in 
actual clinical practice, since clinicians’ determination of disease 
progression is not based on a single examination result. As regards 
AI strategies for detection of glaucoma deterioration, however, 
only relatively few studies have attempted to incorporate clin-
ical data into model training. Dixit et al, employing a convo-
lutional long short- term memory neural network, compared 
distinct networks’ performances on two data sources: VFs alone 
and VFs as supplemented by basic clinical data (ie, IOP, CCT 
and CDR). Not surprisingly, the clinical- data- supplemented VF 
results improved the model’s utility in identifying glaucoma 
progression.23 Lee et al, after analysing young myopic patients’ 
NTG progression, noted that an extratrees model trained with 
both demographic and clinical features outperformed all of 
the test results (eg, baseline OCT and VF parameters).11 In the 
present study, for prediction of NTG conversion in GS patients, 

Table 3 Feature importance in deep- leaning models for prediction of time to NTG conversion

Model Baseline intraocular pressure Diastolic blood pressure cpRNFL thickness Central corneal thickness

XGBoost 0.299 0.116 0.195

Random forest 0.082 0.105 0.104

Gradient boosting 0.053 0.041 0.465

The top 3 clinical features identified in each model are highlighted in green.
cpRNFL, circumpapillary retinal nerve fibre layer; NTG, normal- tension glaucoma.

Figure 2 Regression results for prediction of time to NTG conversion. 
The red line represents the conversion year values as predicted from the 
best model (XGboost trained with ODP, red- free RNFL photography and 
clinical features); the black line represents the ground truth values in 
the longitudinal follow- up data. NTG, normal- tension glaucoma; RNFL, 
retinal nerve fibre layer.
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we constructed DL models that incorporated structural inputs 
along with wide- ranging clinical data. This approach, we believe, 
better reflects clinicians’ real- world decision- making in clinical 
practice.

Unlike previous studies that have emphasised diagnosis, 
the models proposed herein predict disease progression in 
GS patients. These models showed consistent performance in 
predicting both glaucoma conversion and time- to- conversion. 
Specifically, we focused on normal- range- IOP GS patients to 
identify NTG- conversion- related risk. The approaches and 
features that are described and explained herein may prove 
useful as clinical tools, particularly given how important early 
identification of progression is in cases of GS. Prediction of 
disease course on an individual- patient basis would help clini-
cians to present tailored management options to patients with 
regard to issues such as follow- up duration, starting (or not) of 
IOP- lowering treatment, and targeting of IOP levels.

As for feature importance, IOP and CCT were identified as 
important clinical features in our DL models. Earlier longitu-
dinal and population- based studies on risk factors for develop-
ment of open- angle glaucoma (OAG) in normal individuals have 
consistently reported both higher IOP and thinner CCT to be 
significant factors.24–27 Notably too, the present study identi-
fied diastolic blood pressure as an important feature in all of the 
three DL models. Blood pressure, in fact, has been suggested as 
an important and potentially modifiable risk factor in OAG.28 29 
Especially in NTG, vascular factors have been posited as having 
a significant role in disease development.30 Low diastolic perfu-
sion pressure coupled with low diastolic blood pressure could 
reduce ONH blood flow below the critical level, resulting in 
ischaemia as well as predisposition to glaucomatous damage.31–33

Whereas patient baseline age was not recognised as a primary 
factor in the feature importance analysis, our findings showed 
that the age of the group showing NTG conversion was signifi-
cantly lower than that of the non- conversion group. Although 
the exact cause of this finding is unknown, it is possible that 
patients with a lower baseline age tended to follow- up longer, 
and thus more conversions were detected. Further research on 
how glaucoma conversion risk varies according to the age of GS 
patients with normal IOP is needed.

The present study has limitations that must be considered 
when interpreting its findings. First, our meaningful training 
results were in fact based on relatively little data, though DL 
is generally known to require a large dataset for training. We 
included only normotensive GS patients who had not undergone 
any glaucoma treatment over the course of a follow- up period of 
at least 7 years, in order to effect a more clear demonstration of 
the DL models’ prediction performances for both NTG conver-
sion and potential risk factors. Also, for bias reduction and effi-
cient training and testing of the DL models, the ratio of patients 
showing NTG conversion was set to be comparable between the 
training and test sets. The current results, thus, demonstrate only 
that the built model works well for a limited range of patients. 
Further studies with larger datasets will validate the general-
isability of our algorithm in real- world settings. Second, this 
study rigorously employed comprehensive selection and exclu-
sion criteria throughout the entire follow- up period. Although 
our sensitivity analysis, using exclusion criteria solely on initial 
data, yielded consistent results, it is essential to acknowledge the 
potential for bias in our findings. The third limitation of this 
study is that glaucoma progression was not assessed based on 
structural changes. Identifying progression from GS to glaucoma 
based on structural changes can be subjective, even among glau-
coma specialists. Thus, we sought to evaluate the progression of 

glaucoma in a more specific and rigorous manner by avoiding 
any preconceptions in assessing VF results in light of other clin-
ical factors. The clear challenge, then, is to define progression 
based on not only VF results but also structural changes and to 
determine whether worsening in both is integral to that defi-
nition. Fourth, our results might not be generalisable to other 
populations, given that all of the data were collected from a 
single site (an academic medical centre highly specialised for 
glaucoma care) that probably differs significantly from other 
types of practice.

In conclusion, our results suggest that DL models that have 
been trained on both ocular images and clinical data have a 
potential to predict disease progression in GS patients. We 
believe that with additional training and testing on a larger 
dataset, our DL models can be made even better, and that with 
such models, clinicians would be better equipped to predict indi-
vidual GS patients’ respective disease courses.
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