

Rising glaucoma burden demands evidence-based strategies

Alexander K. Schuster ,¹ Cedric Schweitzer²

Glaucoma is a major public health issue in ophthalmology. Despite advances in diagnostics and treatment, it continues to be the leading cause of irreversible blindness worldwide¹ and second in high-income countries.² The silent nature of primary open-angle glaucoma with almost no symptoms in early stages leads to a significant proportion of individuals undiagnosed until significant vision loss has already occurred.

Recent epidemiological data from the European Eye Epidemiology Consortium shows that 56% of all glaucoma cases are undiagnosed, especially at younger ages, with over 80% in those below 55 years of age.³ Based on these recent estimates, Meliante *et al* calculate the current burden of glaucoma in the UK and estimate future projections by taking into account the demographic evolution of the UK population and particularly ageing. They predict an increase of 60% by the year 2060 with then 1.6 million subjects suffering from glaucoma in the UK. This increase underlines a critical need for strategies that go beyond treatment options, focusing on evidence-based healthcare planning including structured case detection, resource allocation for disease surveillance and treatment to prevent visual impairment and blindness at older age.

A recent long-term follow-up analysis of the recruitment of the Early Manifest Glaucoma Trial in Sweden

showed that a population-based screening at a mean age of 67.5 years might halve the number of subjects being blind due to glaucoma over the next 20 years (risk ratio = 0.52).⁴ A previous analysis conducted in the UK found that targeted screening among high-risk populations may be cost-effective, whereas population-wide screening was not.⁵ Recent artificial intelligence-based developments led to increased diagnostic accuracy in glaucoma detection, for instance using colour fundus photographs-based algorithms and shown in evaluation in population-based studies.⁶ Using such technology, repetitive glaucoma screening every 5 years was modelled for the Netherlands, showing cost-effectiveness⁷ and may lower visual impairment burden.

Such strategies, which may further incorporate genetic risk⁸ and behaviour characteristics, will help lower the risk of visual impairment due to glaucoma, while the number of affected individuals in the UK will increase dramatically, as presented by the excellent article of Meliante *et al*.⁹ It is now time to take action by scientifically developing and evaluating these strategies.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; internally peer-reviewed.

© Author(s) (or their employer(s)) 2026. No commercial re-use. See rights and permissions. Published by BMJ Group.

To cite Schuster AK, Schweitzer C. *Br J Ophthalmol* Epub ahead of print: [please include Day Month Year]. doi:10.1136/bjo-2025-328583

Received 24 November 2025
Accepted 25 November 2025

► <https://doi.org/10.1136/bjo-2025-328373>

Br J Ophthalmol 2026;0:1.
doi:10.1136/bjo-2025-328583

ORCID iD

Alexander K. Schuster <https://orcid.org/0000-0002-6304-3599>

REFERENCES

- 1 GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. *Lancet Glob Health* 2021;9:e144–60.
- 2 Bourne RRA, Jonas JB, Bron AM, *et al*. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections. *Br J Ophthalmol* 2018;102:575–85.
- 3 Stuart KV, de Vries VA, Schuster AK, *et al*. Prevalence of Glaucoma in Europe and Projections to 2050. *Ophthalmology* 2025;132:1114–24.
- 4 Aspberg J, Heijl A, Bengtsson B. Screening for Open-Angle Glaucoma and Its Effect on Blindness. *Am J Ophthalmol* 2021;228:106–16.
- 5 Burr JM, Mowatt G, Hernández R, *et al*. The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. *Health Technol Assess* 2007;11:iii–iv.
- 6 Hemelings R, Elen B, Schuster AK, *et al*. A generalizable deep learning regression model for automated glaucoma screening from fundus images. *NPJ Digit Med* 2023;6:112.
- 7 Boverhof B-J, Corro Ramos I, Vermeer KA, *et al*. The Cost-Effectiveness of an Artificial Intelligence-Based Population-Wide Screening Program for Primary Open-Angle Glaucoma in The Netherlands. *Value Health* 2025;28:1317–26.
- 8 de Vries VA, Hanyuda A, Vergroesen JE, *et al*. The Clinical Usefulness of a Glaucoma Polygenic Risk Score in 4 Population-Based European Ancestry Cohorts. *Ophthalmology* 2025;132:228–37.
- 9 Meliante LA, Stuart KV, Luben RN, *et al*. Current Burden and Future Projections of Glaucoma in the United Kingdom. *Br J Ophthalmol* 2025.

¹Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany

²CHU Bordeaux, Department of Ophthalmology, Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, team LEHA, UMR 1219, F-33000, France

Correspondence to Dr Alexander K. Schuster; alexander.schuster@uni-mainz.de